ABAP Development

K-Means Outlier Detection Algorithm ABAP Implementation

Introduction:

Machine learning algorithms such as linear regression, logistic regression, decision tree are very popular topic in today’s market. This article focused on anomaly detection with k-means algorithm by using outliers.

K-means algorithm may be used on diverse of use case scenarios from image compression to system monitoring applications. Identifying anomaly in daily CPU resource utilization trends can be given as a sample use-case. Traditional system monitoring applications use fixed threshold values to identify a bottleneck over the system. But regarding today’s requirements, it is not enough to monitor utilizations with fixed thresholds values. Monitoring system should to learn system resource utilization trends by using ML algorithms and create an alert in anomaly situation.

K-Means is a suitable solution for detecting anomalies in large data sets. Similarity analysis can be given as an example to detect anomalies in a dataset. In the example, two group of cars formed as two different clusters. Those clusters will have its own members in its immediate vicinity that is close similarity groups. If the element is close to the center of the cluster it becomes a group member. Elements far from the center, it identifies an anomaly situation for that cluster. If there is low similarity than those clusters, elements outside the clusters evaluates as an anomaly form.

K-means algorithm is basically based on Euclid calculation to measure distance of a tuple to centroid. This calculation repeating until distance values are being stable for each tuple. Please find k-Means visual sample on figure 1;

Figure 1

k-Means algorithm steps performed as below;

1- Assign each tuple to a randomly selected set
2- Calculate the centroid's distance from each cluster
3- Loop until there is no improvement or you reach the maxcount variable
4- Assign each tuple to the most appropriate cluster
5- Update cluster centroid
6- End loop
7- Return cluster information

HANA has its own k-means algorithm implementation in PAL library. This algorithm can be used easily by any kind of application that running a HANA system.

This article focused on k-Means outliers ABAP implementation without using HANA PAL library. Class has two main public functions. First one is “cluster” method. Second one is “outlier” method. In the cluster method, k-Means attribute values can be provided and assigned dynamically. It can have as many attributes as problem needs.

Dictionary objects:

Before coding, data types need to be defined at ABAP dictionary level.

Table types:

Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Structures:

Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Test Program:

Dictionary objects figure 2, 3, 4, 5, 6, 7,8, 9, 10, 11, 12,13 should be created manually. Please find test program, below;

REPORT zkmeans_test.

TYPES: tt_atts    TYPE STANDARD TABLE OF string WITH EMPTY KEY,
       tt_rawdata TYPE TABLE OF zks_col_kmeans_rawdata WITH EMPTY KEY.

DATA: clustering    TYPE REF TO zks_col_kmeans_clustering_tt,
      outlier       TYPE REF TO zks_col_kmeans_outlier_tt,
      numattributes TYPE i,
      numclusters   TYPE i,
      maxcount      TYPE i,
      lr_kmeans     TYPE REF TO zcl_kmeans,
      dataset       TYPE tt_rawdata.

DATA(attributes) = VALUE tt_atts(
                    ( `SampleAttribute1` )
                   ).

dataset = VALUE #( ( table = VALUE #( ( value = 100 ) ) )
                   ( table = VALUE #( ( value = 99 ) ) )
                   ( table = VALUE #( ( value = 98 ) ) )
                   ( table = VALUE #( ( value = 70 ) ) )
                   ( table = VALUE #( ( value = 95 ) ) )
                   ( table = VALUE #( ( value = 77 ) ) )
                   ( table = VALUE #( ( value = 100 ) ) )
                   ( table = VALUE #( ( value = 97 ) ) )
                   ( table = VALUE #( ( value = 99 ) ) )
                  ).

numattributes = lines( attributes ).
numclusters = 2.
maxcount = 30.

CREATE OBJECT lr_kmeans.

clustering = lr_kmeans->cluster( 
                      rawdata = dataset
                      numclusters = numclusters
                      numattributes = numattributes
                      maxcount = maxcount ).

outlier = lr_kmeans->outlier( 
                      rawdata = dataset 
                      clustering = clustering 
                      numclusters = numclusters 
                      cluster = 0 ).

In example above, only one attribute with a few data provided into the cluster method. Sample test program source code has only one centroid to make it easy to understand. Of course this value can be increased regarding the requirements. Max count value has been set to 30, in test program. But the higher this value, the better results it produces. In the example, in order to identifiy outlier values on cluster, outlier method has been called after cluster method. As soon as outlier values has been identified by the outlier method, those values can be dropped out from provided dataset to filter noisy values.

Class Implementation:

There are two public methods on ABAP ZCL_KMEANS class; cluster and outlier. Other methods are utility functions that help to execute k-Means algorithm. Please find method signatures and implementations by description;

Name CLUSTER
Description  Assign cluster node id to items in dataset
Level  Instance Method 
Visibility  Public 
Parameter Type Pass By Value Typing Method Associated Type
RAWDATA Importing   Type ZKS_COL_KMEANS_RAWDATA_TT
NUMCLUSTERS Importing   Type INT4
NUMATTRIBUTES Importing   Type INT4
MAXCOUNT Importing   Type INT4
CLUSTERING Importing X Type Ref To ZKS_COL_KMEANS_CLUSTERING_TT
METHOD cluster.

    DATA: changed   TYPE boolean VALUE abap_true,
          ct        TYPE i VALUE 0,
          numtuples TYPE i VALUE 0,
          means     TYPE REF TO zks_col_kmeans_means_tt,
          centroids TYPE REF TO zks_col_kmeans_centroids_tt.

    FIELD-SYMBOLS: <lr_rawdata> TYPE zks_col_kmeans_rawdata_tt.

    numtuples = lines( rawdata ).

    clustering = initclustering( numtuples = numtuples
                              numclusters = numclusters
                              randomseed = 0 ).

    means = allocatemeans( numclusters = numclusters
                        numattributes = numattributes ).

    centroids = allocatecentroids( numclusters = numclusters
                               numattributes = numattributes ).

    ASSIGN rawdata TO <lr_rawdata>.

    updatemeans( rawdata = <lr_rawdata>
                clustering = clustering
                means = means ).

    updatecentroids( rawdata = rawdata
                      clustering = clustering
                      means = means 
                      centroids = centroids ).

    WHILE changed = abap_true AND ct < maxcount.
      ct = ct + 1.
      changed = Assign( rawData = rawData
                      clustering = clustering
                      centroids = centroids ).

      UpdateMeans( rawData = rawData 
                      clustering = clustering means = means ).

      UpdateCentroids( rawData = rawData 
                      clustering = clustering 
                      means = means 
                      centroids = centroids ). 
    ENDWHILE.

  ENDMETHOD.
Name OUTLIER
Description  Identify and return anomaly data in provided dataset
Level  Instance Method
Visibility  Public 
Parameter Type Pass By Value Typing Method Associated Type
RAWDATA Importing   Type ZKS_COL_KMEANS_RAWDATA_TT
CLUSTERING Importing   Type Ref To ZKS_COL_KMEANS_CLUSTERING_TT
NUMCLUSTERS Importing   Type INT4
CLUSTER Importing   Type INT4
OUTLIER Returning X Type Ref To ZKS_COL_KMEANS_OUTLIER_TT
METHOD outlier.

    DATA: numattributes   TYPE i VALUE 0,
          means           TYPE REF TO zks_col_kmeans_means_tt,
          centroids       TYPE REF TO zks_col_kmeans_centroids_tt,
          total_dist      TYPE i,
          rawdatalength   TYPE i,
          i               TYPE i VALUE 1,
          c               TYPE i,
          dist            TYPE i,
          wa_outlier like LINE OF outlier->*.

    numattributes = lines( rawdata[ 1 ]-table ).

    FIELD-SYMBOLS: <lr_rawdata> TYPE zks_col_kmeans_rawdata_tt.

    CREATE DATA outlier.

    means = allocatemeans( numclusters = numclusters
                        numattributes = numattributes ).

    centroids = allocatecentroids( numclusters = numclusters
                               numattributes = numattributes ).

    ASSIGN rawdata TO <lr_rawdata>.

    updatemeans( rawdata = <lr_rawdata>
                clustering = clustering
                means = means ).

    updatecentroids( rawdata = rawdata
                      clustering = clustering
                      means = means
                      centroids = centroids ).

    rawdatalength = lines( rawdata ) + 1.

    WHILE i NE rawdatalength.
      c = clustering->*[ i ]-id.
      IF c EQ cluster.
        dist = distance( tuple = rawdata[ i ]-table vector =
                       centroids->*[ cluster + 1 ]-table ).
        total_dist = total_dist + dist.
      ENDIF.
      i = i + 1.
    ENDWHILE.

     total_dist = total_dist / rawDataLength.

    i = 1.
    WHILE i NE rawdatalength.
      c = clustering->*[ i ]-id.
      IF c EQ cluster.
        dist = distance( tuple = rawdata[ i ]-table vector =
                       centroids->*[ cluster + 1 ]-table ).
        If dist > total_dist.
          wa_outlier-table = rawdata[ i ]-table.
          APPEND wa_outlier to outlier->*.
        EndIf.
      ENDIF.
      i = i + 1.
    ENDWHILE.

  ENDMETHOD.
Name INITCLUSTERING
Description  Create and initialize clustering internal table with randomized values for each centroid id and assign “0” value to its data field. Each row has been assigned to a cluster id in dataset in this array
Level  Instance Method
Visibility  Private
Parameter Type Pass By Value Typing Method Associated Type
NUMTUPLES Importing   Type INT4
NUMCLUSTERS Importing   Type Ref To INT4
RANDOMSEED Importing   Type INT4
CLUSTERING Returning X Type ZKS_COL_KMEANS_CLUSTERING_TT
METHOD initclustering.
    FIELD-SYMBOLS: <clustering> TYPE zks_col_kmeans_clustering_tt.

    DATA: lv_random        TYPE REF TO cl_abap_random_int,
          lv_wa_clustering LIKE LINE OF <clustering>,
          lv_counter       TYPE i.

    lv_random = cl_abap_random_int=>create( seed = CONV i( sy-uzeit )
                                      min  = 0
                                      max = numclusters - 1 ).

    CREATE DATA clustering.
    ASSIGN clustering->* TO <clustering>.

    lv_counter = 0.
    WHILE lv_counter NE numclusters.
      lv_wa_clustering-id = lv_counter.
      APPEND lv_wa_clustering TO <clustering>.
      lv_counter = lv_counter + 1.
    ENDWHILE.

    WHILE lv_counter LE numtuples - 1.
      lv_wa_clustering-id = lv_random->get_next( ).
      APPEND lv_wa_clustering TO <clustering>.
      lv_counter = lv_counter + 1.
    ENDWHILE.
  ENDMETHOD.
Name ALLOCATECENTROIDS
Description  Create and initialize centroid value internal table
Level  Instance Method
Visibility  Private
Parameter Type Pass By Value Typing Method Associated Type
NUMTUPLES Importing   Type INT4
NUMCLUSTERS Importing   Type INT4
CENTROIDS Returning X Type Ref To ZKS_COL_KMEANS_CENTROIDS_TT
METHOD allocatecentroids.

    DATA: lv_wa_centroids      LIKE LINE OF centroids->*,
          lr_attributes        TYPE REF TO zks_col_kmeans_attr_table_tt,
          wa_attributes        LIKE LINE OF lr_attributes->*,
          lv_cluster_counter   TYPE i VALUE 0,
          lv_attribute_counter TYPE i VALUE 0.

    CREATE DATA centroids.

    WHILE lv_cluster_counter NE numclusters.

      CREATE DATA lr_attributes.
      WHILE lv_attribute_counter NE numattributes.
        APPEND wa_attributes TO lr_attributes->*.
        lv_attribute_counter = lv_attribute_counter + 1.
      ENDWHILE.
      MOVE lr_attributes->* TO lv_wa_centroids-table.

      APPEND lv_wa_centroids TO centroids->*.
      lv_cluster_counter = lv_cluster_counter + 1.
      lv_attribute_counter = 0.
    ENDWHILE.

  ENDMETHOD.
Name ALLOCATEMEANS
Description  Create and initialize mean value internal table
Level  Instance Method
Visibility  Private
Parameter Type Pass By Value Typing Method Associated Type
NUMTUPLES Importing   Type INT4
NUMCLUSTERS Importing   Type INT4
MEANS Returning X Type Ref To ZKS_COL_KMEANS_MEANS_TT
METHOD allocatemeans.
    DATA: lv_wa_means          LIKE LINE OF means->*,
          lr_attributes        TYPE REF TO zks_col_kmeans_attr_table_tt,
          wa_attributes        LIKE LINE OF lr_attributes->*,
          lv_cluster_counter   TYPE i VALUE 0,
          lv_attribute_counter TYPE i VALUE 0.

    CREATE DATA means.

    WHILE lv_cluster_counter NE numclusters.

      CREATE DATA lr_attributes.
      WHILE lv_attribute_counter NE numattributes.
        APPEND wa_attributes TO lr_attributes->*.
        lv_attribute_counter = lv_attribute_counter + 1.
      ENDWHILE.
      MOVE lr_attributes->* TO lv_wa_means-table.

      APPEND lv_wa_means TO means->*.
      lv_cluster_counter = lv_cluster_counter + 1.
      lv_attribute_counter = 0.
    ENDWHILE.

  ENDMETHOD.
Name UPDATEMEANS
Description  Update mean values
Level  Instance Method
Visibility  Private
Parameter Type Pass By Value Typing Method Associated Type
RAWDATA Importing   Type ZKS_COL_KMEANS_RAWDATA_TT
CLUSTERING Importing   Type Ref To ZKS_COL_KMEANS_CLUSTERING_TT
MEANS Importing X Type Ref To ZKS_COL_KMEANS_MEANS_TT
METHOD updatemeans.

    DATA: numclusters   TYPE i,
          wa_means      LIKE LINE OF means->*,
          lr_attributes TYPE REF TO zks_col_kmeans_attr_table_tt,
          wa_attributes LIKE LINE OF lr_attributes->*.

    FIELD-SYMBOLS: <fs> TYPE zks_col_kmeans_attr_table_tt.

    numclusters = lines( means->* ).

    LOOP AT means->* INTO wa_means.
      ASSIGN wa_means-table TO <fs>.

      LOOP AT <fs> INTO wa_attributes.
        wa_attributes-value = 0.
        MODIFY <fs> FROM wa_attributes.
      ENDLOOP.

      MODIFY means->* FROM wa_means.
    ENDLOOP.

    DATA: clustercounts    TYPE STANDARD TABLE OF i WITH EMPTY KEY,
          countnumclusters TYPE i,
          rawdatalength    TYPE i VALUE 0,
          i                TYPE i VALUE 1, " cluster array index start with 1
          j                TYPE i VALUE 1, " means array index start with 1
          k                TYPE i VALUE 1, " means array index start with 1
          l                TYPE i VALUE 1, " means array index start with 1
          cluster          TYPE i,
          meanslength      TYPE i VALUE 0,
          meansattributeslength type i value 0,
          rawdataattributeslength type i value 0.

    WHILE numclusters NE countnumclusters.
      APPEND 0 TO clustercounts.
      countnumclusters = countnumclusters + 1.
    ENDWHILE.

    rawdatalength = lines( rawdata ) + 1.

    WHILE i NE rawdatalength.
      cluster = clustering->*[ i ]-id + 1.
      clustercounts[ cluster ] = clustercounts[ cluster ] + 1.

      j = 1.
      rawdataattributeslength = lines( rawdata[ i ]-table ) + 1.
      WHILE j NE rawdataattributeslength.
        means->*[ cluster ]-table[ j ]-value =
           means->*[ cluster ]-table[ j ]-value +
           rawdata[ i ]-table[ j ]-value.
        j = j + 1.
      ENDWHILE.

      i = i + 1.
    ENDWHILE.

    meanslength = lines( means->* ) + 1.

    WHILE k NE meanslength.
      meansattributeslength = lines( means->*[ k ]-table ) + 1.

      l = 1.
      WHILE l NE meansattributeslength.
        means->*[ k ]-table[ l ]-value =
          means->*[ k ]-table[ l ]-value / clustercounts[ k ].
        l = l + 1.
      ENDWHILE.

      k = k + 1.
    ENDWHILE.

  ENDMETHOD.
Name UPDATECENTROIDS
Description  Update centroid values
Level  Instance Method
Visibility  Private
Parameter Type Pass By Value Typing Method Associated Type
RAWDATA Importing   Type ZKS_COL_KMEANS_RAWDATA_TT
CLUSTERING Importing   Type Ref To ZKS_COL_KMEANS_CLUSTERING_TT
MEANS Importing   Type Ref To ZKS_COL_KMEANS_MEANS_TT
CENTROIDS Importing   Type Ref To ZKS_COL_KMEANS_CENTROIDS_TT
METHOD updatecentroids.

    DATA: centroidslenght TYPE i VALUE 0,
          k               TYPE i VALUE 1, " means array index start with 1
          centroid        TYPE REF TO zks_col_kmeans_centroids_tt.

    centroidslenght = lines( centroids->* ) + 1.

    WHILE k NE centroidslenght.
      centroid = computecentroid( rawdata = rawdata
                                  clustering = clustering
                                  cluster = k - 1
                                  means = means ).
      centroids->*[ k ]-table = centroid->*[ 1 ]-table.
      k = k + 1.
    ENDWHILE.

  ENDMETHOD.
Name ASSIGN
Description  Update centroid values
Level  Instance Method
Visibility  Private
Parameter Type Pass By Value Typing Method Associated Type
RAWDATA Importing   Type ZKS_COL_KMEANS_RAWDATA_TT
CLUSTERING Importing   Type Ref To ZKS_COL_KMEANS_CLUSTERING_TT
CENTROIDS Importing   Type Ref To ZKS_COL_KMEANS_CENTROIDS_TT
CHANGED Returning X Type ABAP_BOOL
METHOD assign.

    DATA: numclusters      TYPE i VALUE 0,
          distances        TYPE zks_col_kmeans_distances_tt,
          wa_distances     LIKE LINE OF distances,
          distancescounter TYPE i VALUE 0,
          rawdatalength    TYPE i VALUE 0,
          i                TYPE i VALUE 1,
          k                TYPE i VALUE 1,
          newcluster       TYPE i VALUE 0.

    numclusters = lines( centroids->* ).

    WHILE distancescounter NE numclusters.
      APPEND wa_distances TO distances.
      distancescounter = distancescounter + 1.
    ENDWHILE.

    rawdatalength = lines( rawdata ) + 1.
    WHILE i NE rawdatalength.
      k = 1.
      WHILE k NE numclusters + 1.
        distances[ k ] = distance( tuple = rawdata[ i ]-table
                                   vector = centroids->*[ k ]-table ).
        k = k + 1.
      ENDWHILE.

      newcluster = minindex( distances = distances ).
      IF newcluster <> clustering->*[ i ]-id.
        changed = abap_true.
        clustering->*[ i ]-id = newcluster.
      ENDIF. " else no change
      i = i + 1.
    ENDWHILE.

  ENDMETHOD.
Name DISTANCE
Description  Measure distance from data to centroid by using Euclid calculation
Level  Instance Method
Visibility  Private
Parameter Type Pass By Value Typing Method Associated Type
TUPLE Importing   Type ZKS_COL_KMEANS_ATTR_TABLE_TT
VECTOR Importing   Type ZKS_COL_KMEANS_ATTR_TABLE_TT
RETVAL Returning   Type INT4
METHOD distance.

    DATA: sumsquareddiffs TYPE i VALUE 0,
          tuplelength     TYPE i,
          j               TYPE i VALUE 1,
          power           TYPE i VALUE 0.

    tuplelength = lines( tuple ) + 1.

    WHILE j NE tuplelength.
      power = ipow( base = tuple[ j ]-value - vector[ j ]-value exp = 2 ).
      sumsquareddiffs = sumsquareddiffs + power.
      j = j + 1.
    ENDWHILE.
    retval = sqrt( sumsquareddiffs ).
  ENDMETHOD.
Name MININDEX
Description  Cluster id of the cluster that has centroid closest to the tuple
Level  Instance Method
Visibility  Private
Parameter Type Pass By Value Typing Method Associated Type
DISTANCES Importing   Type ZKS_COL_KMEANS_DISTANCES_TT
NEWCLUSTER Returning   Type INT4
METHOD minindex.
    DATA: indexofmin      TYPE i VALUE 0,
          smalldist       TYPE i VALUE 0,
          k               TYPE i VALUE 1,
          distanceslength TYPE i VALUE 0.

    distanceslength = lines( distances ) + 1.
    smalldist = distances[ 1 ].
    WHILE k NE distanceslength.
      IF distances[ k ] < smalldist.
        smalldist = distances[ k ].
        indexofmin = k - 1.
      ENDIF.
      k = k + 1.
    ENDWHILE.

    newcluster = indexofmin.

  ENDMETHOD.
Name COMPUTECENTROID
Description  Determine centroid values
Level  Instance Method
Visibility  Private
Parameter Type Pass By Value Typing Method Associated Type
RAWDATA Importing   Type ZKS_COL_KMEANS_RAWDATA_TT
CLUSTERING Importing   Type Ref To ZKS_COL_KMEANS_CLUSTERING_TT
CLUSTER Importing   Type INT4
MEANS Importing   Type Ref To ZKS_COL_KMEANS_MEANS_TT
CENTROID Importing X Type Ref To ZKS_COL_KMEANS_CENTROIDS_TT
METHOD computecentroid.

    DATA: numattributeslength TYPE i,
          rawdatalength       TYPE i,
          i                   TYPE i VALUE 1,
          j                   TYPE i VALUE 1,
          mindist             TYPE f VALUE '1.7976931348623157E+308',
          attributecounter    TYPE i,
          wa_centroid         LIKE LINE OF centroid->*,
          centroidlength      TYPE i,
          attributes          TYPE REF TO zks_col_kmeans_attr_table_tt,
          wa_attributes       LIKE LINE OF attributes->*.

    numattributeslength = lines( means->*[ 1 ]-table ).
    rawdatalength = lines( rawdata ) + 1.

    CREATE DATA attributes.
    WHILE attributecounter NE numattributeslength.
      APPEND wa_attributes TO attributes->*.
      attributecounter = attributecounter + 1.
    ENDWHILE.

    CREATE DATA centroid.
    wa_centroid-table = attributes->*.
    APPEND wa_centroid TO centroid->*.

    WHILE i NE rawdatalength.
      DATA: c TYPE i.
      c = clustering->*[ i ]-id.
      IF c EQ cluster.
        DATA currdist TYPE f.
        currdist = distance( tuple = rawdata[ i ]-table
                             vector = means->*[ cluster + 1 ]-table ).
        IF currdist < mindist.
          mindist = currdist.
          centroidlength = lines( centroid->*[ 1 ]-table ) + 1.
          j = 1.
          WHILE j NE centroidlength.
            centroid->*[ 1 ]-table[ j ]-value = 
               rawdata[ i ]-table[ j ]-value.
            j = j + 1.
          ENDWHILE.
        ENDIF.
      ENDIF.
      i = i + 1.
    ENDWHILE.

  ENDMETHOD.

Asymptotic Time Complexity:

Please find asymptotic time complexity analysis results of methods in K-Means class, below;

Method Value 
CLUSTER  n^2
INITCLUSTERING 
ALLOCATECENTROIDS  n^2 
ALLOCATEMEANS  n^2 
UPDATEMEANS  n^2 
UPDATECENTROIDS 
ASSIGN  n^2 
OUTLIER  n^2 
DISTANCE 
MININDEX 
COMPUTECENTROID  n^2 
Rating: 5 / 5 (1 votes)